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Electromagnetic Transmission Through a Filled
Slit in a Conducting Plane of Finite

Thickness,

TE Case

DAVID T. AUCKLAND, STUDENT MEMBER, IEEE, AND ROGER F. HARRINGTON, FELLOW, IEEE

Abstract—A solution is developed for computing the transmission char-
acteristics of a slit in a conducting screen of finite thickness placed
between two different media. The slit may be filled with lossy material
while the two regions on either side of the screen are assumed lossless. A
magnetic line source excitation is used (TE case) which is parallel to the
axis of the slit. The equivalence principle is invoked to replace the two slit
faces by equivalent magnetic current sheets on perfect electric conductors.
Two coupled integral equations containing the magnetic currents as un-
knowns are then obtained and solved for by the method of moments.
Pulses are used for the expansion and testing functions. Quantities com-
puted are equivalent magnetic currents, the transmission coefficient, the
gain pattern, and the normalized far field pattern.

I. INTRODUCTION

HE PROBLEM of diffraction of plane waves through

a slit in a perfect electric conductor of finite thickness
has been studied by several investigators [1]H5]. The most
extensive investigation was that of Lehman [1], who used
the analytic properties of finite Fourier transforms. The
solution of Kashyap and Hamid [2] used a Wiener—Hopf
and generalized matrix technique. Both of these solutions
were done for the TM case (incident electric field parallel
to slit axis). The solutions of Hongo [3] and of Neerhoff
and Mur [4], were obtained by a numerical solution of
coupled integral equations and were done for the TE case.
A similar solution for the TM case was obtained by
Wirgin [5]. In this paper, we use the method of moments
to solve coupled integral equations similar in form to
those derived in [4].
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This paper utilizes the generalized network formulation
of coupling through apertures developed in [6] and [7] and
extends these results to three regions coupled by two
apertures. To accomplish this the equivalence principle is
used to replace both faces of the slit by perfect conduc-
tors, each of which carry magnetic current sheets on both
sides. The original problem is now broken up into three
regions which are coupled by the postulated magnetic
current sheets. The two half-space regions are loss free
with arbitrary p and € and the medium in the slit is
assumed lossy with arbitrary complex g and e.

Continuity of the tangential magnetic field is used to
derive two coupled operator equations involving the
equivalent magnetic currents as unknowns. These equa-
tions are put into matrix form using the method of mo-
ments, and solved by using standard matrix methods. The
result can be interpreted in terms of a combination of
“admittance matrices” computed separately for each re-
gion. This gives rise to a network interpretation of the
problem which treats the unknown magnetic currents as
port voltages and the excitation as port currents.

II. PrOBLEM FORMULATION

The original problem configuration is shown in Fig. 1.
It consists of a perfect electric conductor of thickness d
separating two regions a and ¢ which may have different
electrical properties. Coupling between the two regions
occurs through a slit of width w filled with an arbitrarily
lossy medium. The conductor is infinite in the z and y
directions. The problem consists of three regions sep-
arated by two boundaries (the slit faces). Using the equiv-
alence principle, the three regions can be separated by

0018-9480/78 /0700-0499$00.75 © 1978 IEEE
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Fig. 1. Original problem.
covering the slits with perfect electric conductors and
magnetic currents, as described in [6].

The regions are defined as:

regiona x<0,ally
regionb 0<x<d, 0<y<w
regionc x>d, ally
and the boundaries as:
T, x=00<y<w
T, x=d, 0<y<w

which are the two boundaries of separation. To utilize the
equivalence principle, I', and T, are covered by perfect
electric conductors, and on each side of these conductors
a magnetic current sheet is placed which is determined by

M,=nXE, (la)

M2=E2><n, (1b)
where E, and E, are the total electric fields in the aperture
at I, and T,, respectively. This breaks the original prob-
lem up into three parts as shown in Fig. 2. The magnetic
current sheets on each side of I'; and T, are equal and
opposite in sign for each slit face because in the actual
problem the tangential electric field must be continuous
across them. Enforcing the condition that the total

tangential magnetic field is continuous across I'; and T,
leads to two coupled operator equations [11]

Hi (M) +HS (M) + H(M,)= - H;
Hj (M) + Hj (M,)+ H5(M,) =0.

onT,

onl,

(22)
(2b)
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Fig. 2. Equivalences for regions a, b, and c.

In the above, H; is the tangential component of the
incident magnetic field at T',, Hj, and Hj are the fields of
equivalent sources, all in the presence of a complete
conductor. H and H}} are the fields of equivalent sources
radiating inside a closed two dimensional conducting box.
Also the subscripts ¢1 and 72 mean the tangential compo-
nents at T'; or IT',, respectively.

Equations (2a) and (2b) must be solved simultaneously
and we apply the method of moments. Assuming the
magnetic current sheets may be expanded in a linear
combination of basis functions defined on I'; and T, we
have

Ny

M= > VM, on T (3a)
n=1
N

M,= 3 V,,M,, onI,. (3b)

n=1

Here V,, and V,, are unknown complex scalars and M,

and M,, are vector basis functions on I'; and I, defined
by

(n—DAy< y<nAy
o, elsewhere

lu,,

M, = { (4)

for n=1,2,---,N, and y=w/N,, y being on I'|. M,, is
defined exactly the same but with y now on T',. The usual
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symmetric product
&Y= XYy (5)
Iyurl,

is used where the variable of integration is either on I'; or
T',. The testing functions W,,, and W,, are the same as
the vector basis functions defined by (4). Taking the
symmetric product of (2a) with W,, and (2b) with W,,,
we obtain in matrix form

[Yrr+ Y 7, + [ Y] 7,=T
[Y2]V,+[ Y2+ Y™]V,=0. (6)

Here the various component matrices are explicitly
identified by

[Yhe]=
[ "]
[Y"]
[Y*]
[¥*]
[Y?

<W1m’Ht‘i (Mln)> N{XN, (7a)
W as Ho(M3,)) |y v, (7b)

ol In
ol ]
~ [P i HE (M 1,)) ] v, x v, (7c)
ol ]
ol ]
In

(W 1 Hit (M) (7d)
W Hj (M) NyX N, (7e)
[<W2m’ 12(M2n)> (7f)

[<W1msH >]N X1’ (7g)

Equation (6) composes a (N, + N,) X(N,;+ N,) system of
linear equations which suggests the network representa-
tion shown in Fig. 3, where

1 2
[Yb]= [Y ] [Yl] (8)
21 22 °
[(Y*] [Y*]
The matrices [Y"?], [Y?], and [Y*] are the network
representations of regions a, b, and ¢, respectively. The
explicit computation of these quantities which, to carry
the network analogy further we call admittance matrices,
depends only upon their respective regions.
Since the expansion and testing functions are identical
it is clear from (7¢) through (7f) that
[ Yll] [ Y”]
[Y?]=[7¥]
[¥2]=[7%]

N{XN

N>X N,

]
I

©®)

where the tilda (*) denotes the matrix transpose. Also, for
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simplicity, we take N, = N,= N and note that

[Y")=[¥?]
[Y21] [YIZ] (10)

III. CoOMPUTATION OF MATRIX ELEMENTS

The admittance matrices for regions a and ¢ are quite
simple to compute. For example, in region a, H{(M,,)
gives the field of current sheet M, radiating into the half
space a in the presence of a complete conductor. Thus we
have

Hi(M,,)= - >

HP(k,ly -y’ (11)
where k,=wV ye,, 1,=V /¢, , w=radian frequency
of line source, and H{® is the Hankel function of second
kind, order zero. Substituting (4) for M,, and using the
fact that W, =M, for m=1,2,---,N we have for the
mnth element of (7a)'

Yh:a “

=g, S By =y e d (2)

Here Ay,, is the region on I‘1 where W), %0 and Ay, is the
region on I'; where M,,50. The admittance matrix for
region c is exactly the same as (12) except with subscript a
replaced by c. It is also evident that [Y#4] and [Y"*] are
symmetric Toeplitz matrices and hence only one column
of each need be computed [12].

The elements of [ Y?] are given by (7¢) through (7f). For
the TE case under consideration all the magnetic currents
are z directed. Thus an electric vector potential function F
can be defined in region b as [8]

F=yu, (13)

where ¢ is a scalar wave potential satisfying the two
dimensional differential equation

3N
o (14)

everywhere in region b except where the sources M, or M,
exist. The wave propagation constant in region b is
ky=wV pye, and is in general a complex number. The
fields are found from F by

E=—-VXF

Now to compute [Y!'] and [Yzl], we need H?(M,,)
and H%(M,,) where the boundary conditions on y are

+ k=0

Y _

- =0

dy =, ax
Ay
—| =—M,, 16
dx . Mln ( )

The solution to (14) satisfying (16) is given by
Y= 2 Aycosk,,(x— d)cos%m—) (17)

p=0
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where k2, = ki —(pm / W)z,

4p= wk,, s1nk df Mlncos—aﬁz (18)
and & is Neumann’s number (ep =1 for p=0 and 6 =2 for

p>0). Thus from (7c) and (7¢) we obtain the mmnth
elements of [ Y] and [Y?]:

Yl Jwe, § €pCOthpd
mn w = kxp
f fManlmcochos Lkt dy dy’
r,Yr, w
- Jwe, § €,Ccsck,,d
mn w =0 kxp

f M, W2mcosp—ﬂy—cosﬂaya§/. (19)
1,71, w w
The elements of [Y'?] and [Y*?] are found from (10).
More detailed derivation of these equations is given in
[11].

The tangential component of incident magnetic field H,’
is given by

. kK
Hi= -2~ HP(k,R) (20)

where R, = Vx +(y—»,)* and K is the strength of the

line source. Substitution of (20) into (7g) yields for the
mth element of the excitation vector I°:

(k. R,)dy. 21

The variable of integration is on T',. Equation (6) may
now be solved for ¥, and V..

IV. TRANSMISSION COEFFICIENT

The transmission coefficient of the slit is defined as the
ratio of the time average power transmitted into region ¢
by the slit P, . to the time average incident power
intercepted by the slit from region a P, both for a unit
length in the z direction. The usual formula for power
flow into the network represented by [ Y] of Fig. 3 gives

trans Re V [ Yhsc} * V;‘ (22)
where + denotes a complex conjugate. P, is that portion
of the time average power radiated into whole space per
unit length by a magnetic line source of strength K which
is intercepted by the aperture. It is given by

P.

inc

(23)

where 4 is the angle subtended by the aperture, as defined
in Fig. 4. Thus the formula for the transmission
coefficient is

8m,

T=
9k, |K|’

Re{ V,[ Y™ ]* V5 ). (24)
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Fig. 4. Geometry used in computing transmission coefficient and
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V. POWER GAIN AND MEASUREMENT VECTOR

The power gain pattern in region ¢ is defined as the
ratio of the radiation intensity in a given direction to the
radiation intensity which would exist if the transmitted
time average power were radiated over half space, or

6= ol

Here, H,, is the component of the magnetic field in region
¢ in the direction of a magnetic test line current K, u, due
to current M, radiating in the presence of a complete
conductor at x=d. K, u, is used to measure H,, at posi-
tion (r,,,¢) by reciprocity. If HZ is the field at T, due to
K, u, radiating in the presence of a complete conductor,
we obtain from reciprocity

Hme=frH

2

(25)

trans

M,dy.

After using (3b) and rewriting the result in matrix form,
we have

(26)

H,K,=I"V, (27)

where I™ is the tranpose of a measurement vector defined
as

im=[<M2nsH1i<>]le- (28)
The elements of 7™ are given by
(2) »
I 2776 sz,, ( r +(2 ) )ay. (29)

If r,,>A, (far field measurements), where A,=2x/k,, then
(29) becomes

= fo ¥ M, k0= v/ Dsing g, (30)
where K, is adjusted to
1 1.7k _.,
K, 2w e (31)
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The measured component of magnetic field is now given
by

— l ‘]kc —jk - m
H, = w\ 2 {1V} (32)
and the final formula for power gain is
G ke 7 33
()= 0P } ] (33)
VI. NuUMERICAL EXAMPLES

All the examples presented here are done with the
magnetic line source at a distance of one hundred wave-
lengths in region @ from the center of the slit face I', and
the strength adjusted so that the incident electric field at
the center of T'; is equal to unity. The source is at normal
incidence except where noted. Figs. 5 and 6 show the
magnitudes of magnetic currents computed for a relatively
thin slit (w=0.4A,, d=0.001A,) for different values of
permittivity and permeability in region ¢ when regions a
and b are free space. As expected, M, = — M, to within
the third or fourth significant figure, the minus sign denot-
ing 180° phase difference. Also, when d =0, the agreement
is quite good between results in Fig. 5 and those com-
puted in [9].

Two examples done by Neerhoff and Mur [4] for a slit
with w=1p, d=0.1p, and Ay=04353p appear in Fig. 7
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Fig. 8. Magnitude and phase of M, (squares) and A, (iriangles) for
e, =epe.=¢, d=025\, w=1A, N=20,

when region b is free space and regions ¢ and ¢ have
different permittivities. The magnitudes of currents M,
obtained from our solution and from [4] are compared
and agreement is quite good except at the very end point
where the edge singularity behavior is dominant. Figs. 8
through 10 show the effects of having a lossy medium in
region b for a slit with w=1A, d=-0.25A, when regions a
and ¢ are free space.

Fig. 11 shows gain and normalized field patterns for a
slit with varying thickness and different values of ¢,. Our
results agree well with the same example computed in [4].
These cases were also expemmentally measured in [10].
There are slight discrepancies in the magnitudes of the
sidelobes and nulls when the measured results are com-
pared with computed results.
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Fig. 12. Plots of transmission coefficient times cos¢ versus ¢, where ¢
is the angle of incidence of the line source measured from the negative
x axis, for w=0.8\,, d=0.25\,, k,=k. =k, A is ¢,=¢,, B is ¢,=5¢,,
and C is g, =10¢,. N=10.

Fig. 12 shows the effect on the transmission coefficient
for a slit with w=0.8),, d=0.25\, as the source is placed
at different angles of incidence (as measured from the
negative x axis). The quantity actually plotted is the
time-average power transmitted by the slit divided by the
time-average power incident upon I'; when the source is at
normal incidence. This amounts to simply multiplying
(24) by cos ¢, where ¢ is the angle of incidence. This gives
a transmission coefficient equivalent to that computed in
{13] and [14] for d=0. Finaily Fig. 13 is a plot of T'cos¢
versus ¢ for two very thin slits. These are the same as
results obtained when d=0 given in [13] and [14].

VIL

The generalized network formulation of coupling
through apertures developed in [6] and [7] has been ex-
tended to three regions coupled by two apertures. By
using the equivalence principle, a straightforward for-
mulation of transmission through a slit in a screen of

DiscussioN
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Fig. 13. Plots of transmission coefficient times cos¢ versas ¢, where ¢
is the angle of incidence of the line source as measured from the
negative x axis, for k, =k, =k, A is w=102\,, d=10"°\,, and B is
w=0.51A,, d=10"%\,. Squares and triangles represent values taken
from the results in [13] for d=0. N=10.

finite thickness has been developed. Though the problem
formulation is inherently simple, the solution of (6) is not
free of computational difficulties. For instance, the matrix
[ Y?] becomes ill-conditioned as d—0, even though it may
be shown [11] that this formulation reduces to that given
in [6] for the case where d=0. In the actual computations,
however, fairly small values of d may be used (i.e., d=
10~ % or 107 °w). Also if medium b is lossless and the slit
dimensions w or d are such that

2 2 2

(2 (1) =(2

w d Ay
is satisfied for integers p, ¢, some terms of [Y*] become
infinite and our numerical solution fails. A seemingly
reliable solution, however, may be obtained for these

“resonant” cases by slightly perturbing the dimensions w
or d, or by adding a slight amount of 10ss to region b. The

(34)
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actual computation of [¥?] and a documented computer
program are described in {11].
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