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Electromagnetic Transmission Through a Filled
Slit in a Conducting Plane of Finite

Thickness, TE Case
DAVID T. AUCKLAND, STUDENT MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

,4bstract-A solution is developed for computing the transmission char-

acteristics of a sfit in a conducting screen of finite thickoess placed

between two different media. The sfit may be filled with Iussy materfaf

whfle the two regform on either side of the screen are assumed Iussks. A
magnetfc line sorrrce excitation is used @E case) which is parallel to the

axis of the sfitd The equivalence principle is invoked to replace tbe two sfit

faces by eqoivafent magnetic correnit sheets on perfect electric conductors.

Two coupled integraf equations containing the magnetic currents as on-

knowns are then obtained aod solved for by the method of momenta.

Pukes are used for the expansion and testing fonctions. Quantities com-

puted are equivalent magnetic currents, the transmission coefficient the

gain pattern, and the normalized far field pattero.

L lNTRODUCTION

T HE PROBLEM of diffraction of plane waves through

a slit in a perfect electric conductor of finite thickness

has been studied by several investigators [ 1]–[5]. The most

extensive investigation was that of Lehman [1], who used

the analytic properties of finite Fourier transforms. The

solution of Kashyap and Hamid [2] used a Wiener–Hopf

and generalized matrix technique. Both of these solutions

were done for the TM case (incident electric field parallel

to slit axis). The solutions of Hongo [3] and of Neerhoff

and Mur [4], were obtained by a numerical solution of

coupled integral equations and were done for the TE case.

A similar solution for the TM case was obtained by

Wirgin [5]. In this paper, we use the method of moments

to solve coupled integral equations -similar in form to

those derived in [4].
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This paper utilizes the generalized network formulation

of coupling through apertures developed in [6] and [7] and

extends these results to three regions coupled by two

apertures. To accomplish this the equivalence principle is

used to replace both faces of the slit by perfect conduc-

tors, each of which carry magnetic current sheets on both

sides. The original problem is now broken up into three

regions which are coupled by the postulated magnetic

current sheets. The two half-space regions are loss free

with arbitrary p and c and the medium in the slit is

assumed Iossy with arbitrary complex p and e.

Continuity of the tangential magnetic field is used to

derive two coupled operator equations involving the

equivalent magnetic currents as unknowns. These equa-

tions are put into matrix form using the method of mo-

ments, and solved by using standard matrix methods. The

result can be interpreted in terms of a combination of

“admittance matrices” computed separately for each re-

gion. This gives rise to a network interpretation of the

problem which treats the unknown magnetic currents as

port voltages and the excitation as port currents.

II. PROBLEM FORMULATION

The original problem configuration is shown in IFig. 1.

It consists of a perfect electric conductor of thickness d

separating two regions a and c which may have different

electrical properties. Coupling between the two regions

occurs through a slit of width w filled with an arbitrarily
Iossy medium. The conductor is infinite in the z and y

directions. The problem consists of three regions sep-

arated by two boundaries (the slit faces). Using the equiv-

alence principle, the three regions can be separated by
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Fig. 1. Original problem.

covering the slits with perfect electric conductors and

magnetic currents, as described in [6].

The regions are defined as:

region a x<O, ally

regionb O<x<d, O<y<w

region c x > d, all y

and the boundaries as:

r, X=o, O<y<w

r2 x=d, O<y<w

which are the two boundaries of separation. To utilize the

equivalence principle, 1’1 and ?72 are covered by perfect

electric conductors, and on each side of these conductors

a magnetic current sheet is placed which is determined by

M,=nx E1, on rl (la)

M2=E2Xn, on rz (lb)

where El and E2 are the total electric fields in the aperture
at 171and rz, respectively. This breaks the original prob-

lem up into three parts as shown in Fig. 2. The magnetic

current sheets on each side of 1’1 and rz are equal and

opposite in sign for each slit face because in the actual

problem the tangential electric field must be continuous

across them. Enforcing the condition that the total

tangential magnetic field is continuous across r, and r2

leads to two coupled operator equations[11]

H;(M1)+H; (M1)+H; (M2)= –H; (2a)

Y
LINE SOURCE

~z-’
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w

(x,, Y.) Ml

REGION a
n

o x

I
(o)
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w
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REGION b .

-M20

o . d
<X

(b)

L

Y

w

n

REGION C

M2

o x

(c)

Fig. 2. Equivalences for regions u, b, and c.

In the above, H: is the tangential component of the

incident magnetic field at rl, H;, and I& are the fields of

equivalent sources, all in the presence of a complete

conductor. Hf~ and H: are the fields of equivalent sources

radiating inside a closed two dimensional conducting box.

Also the subscripts t 1 and t2 mean the tangential compo-

nents at r, or rz, respectively.

Equations (2a) and (2b) must be solved simultaneously

and we apply the method of moments. Assuming the

magnetic current sheets may be expanded in a linear

combination of basis functions defined on rl and r2 we

have
N,

Ml= x ~ln~ln, on r, (3a)
~=1

N2

~2 = 2 v2n~2n, on r2. (3b)
~=1

Here Vln and V2n are unknown complex scalars and 1141.

and ik?2. are vector basis functions on rl and r2 defined

by

{
M,n= lUZ’

(n– l)Ay< y < nAy
(4)

o, elsewhere

for n=l,2,. . . ,N, and y = w/N1, y being on I’l. lkf2. is

Hi (Ml)+ HA (M2) + H&(M2) =0. (2b) defined exactly the same but withy now on r,. The usual
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Fig. 3. Network representation for (6).

symmetric product

(x, Y)= J x. Ydy (5)
r, u rz

is used where the variable of integration is either on r, or

17z.The testing functions W1~ and W2M are the same as

the vector basis functions defined by (4). Taking the

symmetric product of (2a) with W1~ and (2b) with Wz~,

we obtain in matrix form

[Y~”+Y’’] @-[Y’’]T2=P

[ Y“] F,+ [ Y“+ Y’”] 72=6. (6)

‘Here the various component matrices are explicitly

identified by

[ Y~”] = - [( JJ’’,J-fwln))]N,xN, (7a)

[ Y~’] = - [(?’v2mJifi(fw2n) )lN2xN2 (7b)

[ Y“]= -[(~,m,~: (~ln))lN,xN, (7C)

[ Y“]= -[(w,m)~fi(~2n) )lN,xN2 (7d)

[ Y“]= -[<w’m,~:(~ln)) lN2xN, (7e)

[ Y“]= -[(w2m,~i(~2n)) lN2xN2 (7f)

F= [<wlmYH;)lN, xl, (7g)

Equation (6) composes a (lV1 + IV2) x (Nl + IV2) system of

linear equations which suggests

tion shown in Fig. 3, where

[

[Y”]
[Ybl= [y’,]

‘The matrices [ Yha], [ Y~], and

representations of regions a, b,

the network representa-

[Y1’] 1[Y”] -
(8)

[ Yhc] are the network

and c, respectively, The
explicit computation of these quantities which, to carry

the network analogy further we call admittance matrices,

depends only upon their respective regions.

Since the expansion and testing functions are identical

it is clear from (7c) through (’7f) that

[Y’’] =[f”]

[Y’’]= [w]
[Y’’]= [P]

(9)

where the tilda (-) denotes the matrix transpose. Also, for

simplicity, we take Nl = iV2 = N and note that

[Y’’] =[Y”]

[Y’l]=[Y1’].
(lo)

III. COMPUTATION OF MATWX ELEMENTS

The admittance matrices for regions a and c are quite

simple to compute. For example, in region a, H,; (M,n)
gives the field of current sheet Ikll. radiating into the half

space a in the presence of a complete conductor. Thus we

have

where k.= u-, q.= ~x, a= radian frequency

of line source, and H~2J is the Hankel function of second

kind, order zero. Substituting (4) for itll~ and using the

fact that IVlm =111~ for m=l,2,. ... N we have for the

ninth element of (7a):

Here Ay~ is the region on rl where lW1~ #O and Ay~ is the

region on rl where ikfl~ # O. The admittance matrix for

region c is exactly the same as (12) except with subscript a

replaced by c. It is also evident that [ YkSa] and [ Yhc] are

symmetric Toeplitz matrices and hence only one column

of each need be computed [12].

The elements of [ Y~] are given by (7c) through (7f). For

the TE case under consideration all the magnetic currents

are z directed. Thus an electric vector potential function F
can be defined in region b as [8]

F= +Uz (13)

where ~ is a scalar wave potential satisfying the two

dimensional differential equation

(14)

everywhere in region b except where the sources All or ik12

exist. The wave propagation constant in region b is

kb = u= and is in general a complex number, The

fields are found from F by

E=– VXF
H= –jiocbF,

(15]

Now to compute [Y11] and [ Y21], we need H,f’ (Ml.)
and H~2(MJ where the boundary conditions on ~ are

The solution to (14) satisfying (16) is given by

(16)

~= ~ APcoskXP(x-d)cos: (17)
p=o
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where k~P= k: – (pn/ W)2,

AP =
–s

!

P$?y
‘M,n Cosy @ (18)

wkX. sin kX. d o

and $ is Neumann’s number (~= 1 for p = O and ~ = 2 for

p > O). Thus from (7c) and (7e) we obtain the mnth

elements of [ Y1l] and [ Y2’]:

“J1M,.W,.COS=LOSF C$dY’
r, r, w

“J/M,nw2m.os@cos@+4 v’. (19)
r2 r, w

The elements of [ Y’z] and [ Y’z] are found from (10).

More detailed derivation of these equations is given in

[11].

The tangential component of incident magnetic field H,i
is given by

(20)

i
where R,= x:+ (y –y,)z and K is the strength of the

line source, Substitution of (20) into_,(7g) yields for the

mth element of the excitation vector Z’:

(21)

The variable of integratio~ is on rl. Equation (6) may

now be solved for VI and V2.

IV. TRANSMISSION COEFFICIENT

The transmission coefficient of the slit is defined as the

ratio of the time average power transmitted into region c

by the slit Ptran, to the time average incident power

intercepted by the slit from region a P,nc, both for a unit

length in the z direction. The usual formula for power

flow into the network represented by [ Yhc] of Fig. 3 gives

P trans =Refi2[YkSc]*~~ (22)

where * denotes a complex conjugate. Pine is that portion

of the time average power radiated into whole space per

unit length by a magnetic line source of strength K which

is intercepted by the aperture. It is given by

(23)

where 9 is the angle subtended by the aperture, as defined

in Fig. 4. Thus the formula for the transmission

coefficient is

87rqa
T= —Re{fi2[Yhc]*~~). (24)

8kalKj2

t’

REGION a

ii
REGION C

—x

Fig. 4. Geometry used in computing transmission coefficient and
measurement of H~ at rm.

V. POWER GAIN AND MEASUREMENT VECTOR

The power gain pattern in region c is defined as the

ratio of the radiation intensity in a given direction to the

radiation intensity which would exist if the transmitted

time average power were radiated over half space, or

WN.FLJ2
G(+)= p .

trans
(25)

Here, H~ is the component of the magnetic field in region

c in the direction of a magnetic test line current Km Uz due

to current A42 radiating in the presence of a complete
conductor at x = d. K~uz is used to measure H~ at posi-

tion (r~, +) by reciprocity. If H; is the field at r2 due to

Kmuz radiating in the presence of a complete conductor,

we obtain from reciprocity

JH.K~ = H;.iklzdy. (26)
rz

After using (3b) and rewriting the result in matrix form,

we have

where ~m is the tranpose of a measurement vector defined

as

im=[(M,n>H:)]~X,. (28)

The elements of ~’” are given by

kCK~ w
Inm=– —

J% o
M2nu.Hf2)(k.l~~+( ;-~)uyl)@ (29)

If rm>Ac (far field measurements), where & = 2n/kc, then

(29) becomes

Inm=
J

‘Mzn ~j.%ti – (W/’)hin+ & (30)
o

where Km is adjusted to

(31)
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Fig. 5. Magnitude of MI (squares) and Mz (triangles) for slit w= 0.4&,
d=0.001&, kb=ko=ko. A is Cc=eo, B is CC=%o, and c is ~C= 10cO
N= 10.

3“ool---+ t

I I

d-++----+--++-l
POSITION

FYg. 6. Magnitude of Ml (squares) and Mz (trimgfes) for sbt w= 0.4&,

d= WOIAd, kb =ka=ko. A is yC=%, B is pC=3/~, arid C is pC= 10~.
N= 10.

The measured component of magnetic field is now given

by
——

l-lm=-~
i

jk=

‘T

_ .-Jkr. {i”iZ,}
27rrm

(32)

and the final formula for power gain is

G(+) = ~i% lfiq2
c

W. PJUMERICAL 132iivmLEs

All the examples presented here are done with the

magnetic line source at a distance of one hundred wave-

lengths in region a from the center of the slit face r, and

the strength adjusted so that the incident electric field at

the center of ~1 is equal to unity. The source is at normal
incidence except where noted. Figs. 5 and 6 show the

magnitudes of magnetic currents computed for a relatively

thin slit (w= 0.4ha, d= O.OOIA=) for different values of

permit.tivity and permeability in region c when regions a

and b are free space. As expected, Ml = — Mz to within

the third or fourth significant figure, the minus sign denot-

ing 180° phase difference. Also, when d= O, the agreement

is quite good between results in Fig. 5 and those com-

puted in [9].

Two examples done by PJeerhoff and Mur [4] for a s~it

with w = lp, d= O.lp, and &= O.4353p appear in Fig. 7

0.50
-1

0.00 Ii+ +++-++4tb+i-t~+

POSITION

Fig. 7. Magnitudes of Mz for w= Ip., d= O.lp, kO=0.4353p, A is k==
i,5k0, kc= kb = kO, and B is k.= 1.5k0, kc= 1.6k0, kb = ko. Triaugles
represent values taken from [4] and squares represent values obtained
from our computations. N= 30.

LL.
m
a ‘--~—-~- -
r
n-

-90-

-180- ~+~
/4

POSITION

2.00

r

-+-+++++-+++-+-+--+ :

r

‘“oob++--+++-++-+i
F’13SITION

Fig. 8. Magnitude and phase of Ml (squares) and Mz (triangles) for

ea==,~fic = Co,d= O.25&, W= ~~=. N=20.

when region b is free space and regions a and c have

different permittivities. The ma~.itudes of currents Mz

obtained from our solution and from [4] are compared

and agreement is quite good except at the very end point

where the edge singularity behavior is dotinant. Figs. 8

through 10 show the effects of having a Iossy medium in

region b for a slit with w = l~a, d= W25& when regions a

and c are free space.

Fig. 11 shows gain and normalized field patterns for a

slit with varying thickness and different values of e~. Our

results agree well with the same example computed in [4].

These cases were also experimentally ,measured in [10].

There are slight discrepancies in the magnitudes of the

sidelobes and nulls when the measured results are com-

pared with computed results.
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Fig. 9. Magnitude and phase of Ml (squares) and Mz (triangles)
for C.= cc= CO,d=0.25Aa, w = 1A., and c~= (1 –j)tO. N=20.
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Fig. 10. Magnitu& rmd phase of M, (squares)and Mz (triangles) for
e.= CC=CO,d=0.25A=, w= l&, and Cb=(1 –jlO)cO. N=20.
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Fig. 11. Ciain and normalized field patterns for ,ka= /cc= kO, w=
2.148A.. A is d= O.0417&, %=c O. B is d= 1.331 A., q,=cO. C is d=
1.331&, c~= 2.59e0. N= 30.

t- 1 c I

0.01 , $ , , ,
, , 9b

RNGLE 13F INCIDENCE

Fig. 12. Plots of transmission coefficient times cos @ versus +, where @
is the angle of incidence of the line source measured from the negative

x axis, for w =0.8& d= 0.25hU, k== kc= ko. A is Cb==CO,B is eb= 5C0,
and ~k cb=lOr-O. N=1O.

Fig. 12 shows the effect on the transmission coefficient

for a slit with w = 0.8Aa, d= 0.25& as the source is placed

at different angles of incidence (as measured from the

negative x axis). The quantity actually plotted is the

time-average power transmitted by the slit divided by the

time-average power incident upon r] when the source is at

normal incidence. This amounts to simply multiplying
(24) by cos~, where @is the angle of incidence. This gives

a transmission coefficient equivalent to that computed in

[13] and [14] for d= O. Finally Fig. 13 is a plot of Tcos@

versus @ for two very thin slits. These are the same as

results obtained when d= O given in [13] and [ 14].

VII. DISCUSSION

The generalized network formulation of coupling

through apertures developed in [6] and [7] has been ex-

tended to three regions coupled by two apertures. By

using the equivalence principle, a straightforward for-

mulation of transmission through a slit in a screen of
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flNGLE OF INCIDENCE

Fig. 13. Plots of transmission coefficient times cos+versm$, where+
is the angle of incidence of the line source as measured from the
negative x axis, for k==kb=kc. A is w=l.(?2Aa, d=10–5&, and B is
W=0.51Aa, dS=10-4Aa. Squares and triangfes represent values taken

from the results in [ 13] ford= 0. N= 10.

finite thickness has been developed. Though the problem

formulation is inherently simple, the solution of (6] is not

free of computational difficulties. For instance, the matrix

[ Y~] becomes ill-conditioned as d~fl, even thou@ it may

be shown [11] that this formulation reduces to that given

in [6] for the case where d= O. In the actual computations,

however, fairly small values of d may be used (i.e., d=
10- 4W or 10- 5w). AISO if medium b is lossless and the slit

dimensions w or d are such that

(34)

is satisfied for integers p, q, some terms of [ Yb] become

infinite and our numerical solution fails. A seemingly

reliable solution, however, may be obtained for these

“resonant” cases by slightly perturbing the dimensions w

or d, or by adding a slight amount of loss to region b. The. .

actual computation of

program are described
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[ 3’6] and a documented computer

in [1 1].
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